Cancer Types | Brain Cancer - National Foundation for Cancer Research

Brain Cancer

Brain Cancer

People of all ages are diagnosed with brain cancer, but there is more frequency among children and older adults. Brain cancer is the second most commonly diagnosed cancer in children (after leukemia).

Key Facts

  • Of the nearly 84,000 brain tumors diagnosed in the U.S. each year, approximately 29.7% are considered malignant – or cancerous.
  • An estimated  24,530 malignant tumors of the brain and spinal cord will be diagnosed in the U.S. in 2021, with around 18,600 deaths expected to result from the diagnosis. 
  • Overall, the chance that a person will develop a malignant tumor of the brain or spinal cord in his or her lifetime is less than 1% (about 1 in 143 for men and 1 in 185 for women).
  • Survival rates vary widely depending on the type of tumor.
  • Glioblastoma (GBM) is the deadliest type of brain cancer, accounting for  48.6% of all malignant brain tumors and the five-year average survival rate is only 7.2% or less.
Source: American Cancer Society’s Cancer Facts & Figures 2021 and American Brain Tumor Association’s Brain Tumor Statistics

Signs and Symptoms

A symptom is a change in the body that a person can see and/or feel. A sign is a change that the doctor sees during an examination or on a laboratory test result. If you have any of the symptoms below, it does not mean you have cancer but you should see your doctor or health care professional so that the cause can be found and treated, if needed.

  • Headaches
  • Seizures
  • Difficulty thinking and/or speaking
  • Changes in personality
  • Loss of balance
  • Change in vision including blurriness, double vision, abnormal eye movements, light sensitivity and loss of vision
  • Memory loss
  • Disorientation
  • Fatigue and muscle weakness
  • Muscle weakness
  • Depression
  • Anxiety
  • Tingling or stiffness on one side of the body
Source: National Brain Tumor Society 2021
Brain Cancer Location
24530
will be diagnosed in 2021
18600
deaths expected in 2021
1
% lifetime risk of brain cancer
Silver Brain Cancer Ribbon

Brain Cancer Awareness Month is recognized in May. To help accelerate cures please make a gift today.

Researchers Working on Brain Cancer

Dr. Rakesh Jain
Dr. Rakesh Jain
Paul Fisher, M.Ph., Ph.D.
Paul Fisher, M.Ph., Ph.D.
Dr. Web Cavenee
Web Cavenee, Ph.D.
Cesare Spadoni, Ph.D.
Cesare Spadoni, Ph.D.
W. K. Alfred Yung, M.D.
W. K. Alfred Yung, M.D.

Related Updates

NFCR In the News: Addressing Deadly Brain Cancer, GBM

Detecting Skin Cancer with Artificial Intelligence and Other Game-Changing Technologies in Cancer

Cases of skin cancer are skyrocketing. In the past three decades, more people have been diagnosed with some form of skin cancer than all other cancers combined. Because of this, researchers worldwide have been fascinated with figuring out how to better detect and treat skin cancer. The fascination has launched some of the world’s brightest scientists into innovation overdrive. The result? Artificial Intelligence to detect skin cancer.  Artificial Intelligence and Cancer Artificial Intelligence (AI) involves teaching technology to do tasks previously done by humans. It can be an Alexa device telling a joke, Google Home turning the lights on or off, or something more complex like analyzing medical data. Typically, information like X-Rays or CT scans would be read, reviewed, and analyzed by medical teams to identify abnormalities. Today, AI is used to quickly translate an image into data, compare that data against a more extensive set of normal and abnormal images, and produce a quantitative assessment of potential abnormalities. This method not only reduces the chance of human error but speeds up the process tenfold. Fewer errors and quicker diagnoses mean a far better chance of treating cancer in an early stage.  Innovative Cancer Technologies While the use of AI feels exceptionally futuristic, innovative technology has been emerging from the cancer field for years. In 2017, the U.S. Food and Drug Administration approved a bright pink liquid known as 5-ALA for brain cancer treatment. This drink, often referred to as ‘pink drink,’ is a surgical intervention drug given to brain cancer patients ahead of their surgeries. The pink drink makes brain tumor cells illuminate a hot pink color under fluorescent light when paired with the right technology.  Previous treatment for brain cancer was resection of the tumor. However, physicians alone were historically insufficient or incompletely identified tumor tissue during surgery, which led to recurrence and the abysmal survival rate of 1-2 years on average. Aided by the brilliant pink hues induced by 5-ALA, doctors can now remove and identify significantly more of the tumor.  In 2020, an NFCR funded team of renowned researchers explored how technology could improve treatment outcomes for patients with T-cell non-Hodgkin’s lymphoma. Before this study, professionals agreed that a molecule called fenretinide would, in theory, be able to treat non-Hodgkin’s lymphoma. However, it was seemingly impossible to deliver this molecule to cancer cells because it is poorly soluble in water. The NFCR-funded research team developed a unique delivery system to solve this issue, thus improving outcomes for lymphoma patients.  Accelerating Promising Cancer Research It is discoveries like these launch medical professionals forward towards finding a cure for cancers. NFCR proudly presents the Salisbury Award Competition, which helps oncology startups accelerate their findings to benefit the cancer community. This program offers a unique opportunity for other promising research deemed high-risk, high-impact ideas, a core value of NFCR’s.  NFCR will host the fourth Salisbury Award Competition later this year, with applications opening in March to academic laboratories advancing promising experimental cancer therapeutic, diagnostic, detection, and vaccine innovations.  Learn more about the Salisbury Award or apply to the program here.   Additional Reads You May Enjoy:  Salisbury Award: Providing […]

The World’s First Oncolytic Virus Drug was Launched to Treat Malignant Brain Tumor GBM

Glioblastoma multiforme (GBM) is the most aggressive malignant brain tumor in adults, with a median survival of only about ten months. Unlike low-grade gliomas (grades I and II), which grow slowly, high-grade gliomas (grades III and IV) grow much faster and can spread to other parts of the brain, resulting in a patient’s death. GBM is the highest grade brain tumor (grade IV) with a very poor prognosis. The standard treatment for GBM includes surgery, radiation, and chemotherapy. However, these limited treatment approaches cannot control the tumor progress, and the rate of brain tumor recurrence is high, resulting in low overall survival (OS) in most patients.   Oncolytic Virus Therapy  Oncolytic virus therapy represents a new promising cancer immunotherapy approach that utilizes genetically modified viruses to infect and kill cancer cells. The viruses are modified to selectively infect and lyse cancer cells through genetic engineering processes while leaving normal cells unharmed. The genetic modification of the viruses also grants them the ability to produce immune-boosting molecules or initiate anti-cancer immunity through multiple mechanisms of the patient’s own immune system.  The First Oncolytic Virus Therapy for GBM  Recently, the world’s first oncolytic virus-based immunotherapy (Teserpaturev) was approved in Japan. Teserpaturev offers a new option for treating GBM and brings new hope to thousands of patients suffering from this malignant brain tumor.  Teserpaturev is a genetically engineered herpes simplex virus type 1 (HSV-1). The uniqueness of this new oncolytic virus-based drug is that it not only has strong killing power to brain tumor cells that the virus entered into, but it is also able to kill the tumor cells that have spread to other parts of the brain. This process happens by inducing systemic antitumor immunity of a patient’s own immune system.  In June 2021, Teserpaturev received a conditional and time-limited marketing approval in Japan to treat malignant glioma based on a Japanese phase 2 clinical trial in patients with GBM. The clinical trial results showed that 92% of patients who received Teserpaturev immunotherapy treatment were still alive after one year. This percent is considerably higher than the typical 15% one-year survival rate in this group of patients receiving standard late-stage brain tumor treatments.  Bottom Line Because Teserpaturev is currently under conditional and time-limited marketing approval in Japan, this novel immunotherapy for GBM is only available at specified hospitals in Japan. We hope international multi-center clinical trials on this innovative drug can take place in the near future. Hopefully, the novel therapy can be made available to GBM patients around the world.  Stay up-to-date with the latest information on new drug development. Receive our monthly e-newsletter and blogs featuring stories of inspiration, support resources, cancer prevention tips, and more; sign up here.  Additional Reads You May Also Enjoy: Treating Brain Cancer: What You Need to Know New Brain Scan Technology Can Improve Tumor Removal GBM AGILE – Changing the Way We Fight Brain Cancer References Daiichi Sankyo introduces Delytact in Japan to treat malignant glioma. com, November 2, 2021.  http://www.pharmabiz.com/NewsDetails.aspx?aid=143694&sid=2 First launch for Daiichi Sankyo’s oncolytic virus Delytact in Japan. Pharmaphorum, November 1, 2021.  https://pharmaphorum.com/news/first-launch-for-daiichi-sankyos-oncolytic-virus-delytact-in-japan/